Vahid Ganjalizadeh

Email: vahid.ganjalizadeh@gmail.com

Phone: (669) 294-6761

Website: https://vahidganjalizadeh.info

EDUCATION

University of California, Santa Cruz, USA	2016-present
Ph.D. in Electrical and Computer Engineering (Bio-photonics and Machine-learning)	
University of California, Santa Cruz, USA	2016-2019
M.Sc. in Electrical Engineering (Optofluidics and Bio-photonics)	
University of Tabriz, IRAN	2011-2013
M.Sc. in Electrical Engineering (Analog IC design and Microsystem Technology)	
University of Tabriz, IRAN	2007-2011
B.Sc. in Electrical Engineering (Digital Electronics)	

WORK EXPERIENCE

Applied Optics Group (Professor Holger Schmidt's lab)

2016-present

Bio-photonics and ML researcher

UCSC, USA

- Speckle Pattern Analysis using Deep-Learning: Developing a deep-learning model with multiple CNN layers followed by a regression layer to map speckle patterns seen in scattered light from a waveguide to a 1D array. I'm using Scikit-Image, TensorFlow, and H5py libraries to pre-process, train, and infer and store the image data, respectively (ongoing project).
- Real-Time Multiplexed Detection on the Edge: Developed an Edge-TPU classifier using TensorFlow and implemented it on Google Coral Dev Board for real-time multiplexed event detection in optofluidic devices. It utilizes a fast wavelet-based event detector (called PCWA, also developed by me) followed by a quantized DNN model to classify detected events. Due to limited resources available in the edge device, various parallel-processing schemes, including multi-processing, multi-threading, data sharing via queues, etc., were utilized to achieve real-time performance. A Plotly Dash App is also implemented as a browser-based GUI to run on the edge device as a server and let the user monitor real-time data plots plus event detection results. A manuscript is submitted to Scientific Reports and is under review.
- Fast Wavelet Analysis Technique for Single Molecule Detection and Identification: Developed a CWT-based event detection algorithm with pattern matching capability in multi-scale and parallel clustering scheme to group local maxima found in each level into a single event localization independently and in parallel. It is implemented in Python and available at my github repository (PCWA).
- Real-Time Closed-Loop Optofluidic Chip Excitation System: In this project, I have utilized a single-photoncounting module (SPCM) to read real-time photon counts from the chip and adjust input laser power accordingly. Due to the limitations of the TimeHarp photon counter, I've developed a real-time binning system implemented in Digilent Arty-A7 FPGA board to bin, buffer, and transfer binned photon counts to the PC via Ethernet (UDP socket protocol). A manuscript is under preparation.
- Photonic Chip Design, Simulation, and Characterization: Collaborating with Brigham Young University (BYU) on designing, characterizing, and optimizing optofluidic devices for point-of-care applications. I'm experienced with waveguide-based photonic chip simulation with FIMMWAVE/FIMMPROP Photon Design software, especially in creating Python scripts to communicate and run a batch/routine of FIMMWAVE simulations. Also, I'm experienced in building optical setups (imaging, single-molecule fluorescence detection with SPCM, and optofluidic chip handling and running the experiment (a couple of second-author papers).
- **Mode Analyzer:** Application-specific program developed in Python for fluorescent and chip facet waveguide mode image analysis. It has an MMI spot analysis tool that automatically finds and fits N-Gaussian peaks for FWHM and peak-to-valley calculation. (<u>Mode Analyzer</u>).

- **3D Atomic deposition simulation:** Developed a 3D atomic deposition model in Python using PyOpenGL library as the 3D visualization tool. Individual atoms are introduced into the simulation environment, and their dynamics are modeled based on L-J potential. EE216 project (Fall 2017) (<u>Atomic Deposition</u>).
- **PDMS Optofluidic Chip Design and Fabrication:** Well experienced with PDMS chip design and fabrication from mask to final device. I've done numerous fabrications from scratch: device simulation with FIMMWAVE/FIMMPROP, chrome mask design with AutoCAD, photolithography, testing, and characterizing final chips. A couple of publications are based on these PDMS chips. I developed a Lisp script for AutoCAD to automate design rule check (DRC) publicly available in my github (<u>PolyHatch</u>).
- Teaching Assistant for EE101 (Fall 2020).
- Teaching Assistant for EE103 (Fall 2018).
- Mentoring undergraduate students for the summer research program.

SAPNA.Co[™]

R&D Engineer

- Developed a tabletop CNC machine using Mojo-V3 FPGA and stepper motors as a PMMA engraver for microfluidic application.
- Developed scripts and crontab schedules, mostly in Bash and Python, for RPi to drive 3D holographic displays.
 2012-2014

Research Assistant

- Experience in masked and maskless photolithography processes.
- Soft-lithography and replica molding processes in microfluidic and optofluidic devices.
- Free-space optics, imaging systems, and real-time image processing.

Tabriz University Robotic Group (TURG)

HWE/SWE

- Developed VHDL/Verilog codes for small-sized league soccer robots' central control unit (Spartan-3A FPGA).
- Implemented ZigBee communication between PC-based strategy AI and robots.
- Developed a C# software to detect and track circles in video frames in real time using OpenCV.

TECHNICAL SKILLS

- Coding/Programming: Python, Matlab, C#, C
- **Python:** Data analysis & ML, Software Dev. (multi-processing/threading, socket, instruments) Scipy, TensorFlow, Scikit-Learn, Scikit-Image, Matplotlib, Pandas, H5py, Tk, PySide, OpenCV
- Finite Elements: ANSYS APDL, CFX/Fluent, COMSOL Multiphysics
- CAD/Graphics: AutoCAD, Inventor/Fusion 360, Blender, Illustrator, GIMP
- Optics/Photonics: PhotonDesign (FIMMWAVE & FIMMPROP), Code-V (certified), MEEP (FDTD), TracePro
- Board and μC: Coral Dev Board (Edge-TPU), Raspberry Pi, Arduino, Arty A7
- FPGA (Xilinx): Vivado, Vitis HLS, MicroBlaze, AXI-4

Awards and Honors

- Received EE department fellowship from the University of California, Santa Cruz, Spring
 2017
- Received full scholarship from University of Tabriz for B.S.
- Top 0.67% ranked among 311,000 participants in the nationwide entrance exam of state universities 2007

PUBLICATIONS

 Ganjalizadeh, Vahid, Gopikrishnan G. Meena, Matthew A. Stott, Aaron R. Hawkins, and Holger Schmidt. "Machine Learning at the Edge for AI-Enabled Multiplexed Pathogen Detection." *Scientific Reports* 13, no. 1 (2023): 4744. <u>https://doi.org/10.1038/s41598-023-31694-6</u>.

2010-2012

2007-2011

2015-2016

Tabriz, IRAN

University of Tabriz, IRAN

University of Tabriz, IRAN

- Ganjalizadeh, Vahid, Gopikrishnan G Meena, Thomas A Wall, Matthew A Stott, Aaron R Hawkins, and Holger Schmidt. "Fast Custom Wavelet Analysis Technique for Single Molecule Detection and Identification." Nature Communications 13, no. 1 (2022): 1–9. <u>https://doi.org/10.1038/s41467-022-28703-z</u>.
- Meena, GG, AM Stambaugh, V Ganjalizadeh, MA Stott, AR Hawkins, and H Schmidt. "Ultrasensitive Detection of SARS-CoV-2 RNA and Antigen Using Single-Molecule Optofluidic Chip." *Apl Photonics* 6, no. 6 (2021): 066101. <u>https://doi.org/10.1063/5.0049735</u>.
- Amin, Md Nafiz, Vahid Ganjalizadeh, Matt Hamblin, Aaron R Hawkins, and Holger Schmidt. "Free-Space Excitation of Optofluidic Devices for Pattern-Based Single Particle Detection." *IEEE Photonics Technology Letters* 33, no. 16 (2021): 884–87. <u>https://doi.org/10.1109/lpt.2021.3069673</u>.
- Hamilton, Erik S, Vahid Ganjalizadeh, Joel G Wright, Holger Schmidt, and Aaron R Hawkins. "3D Hydrodynamic Focusing in Microscale Optofluidic Channels Formed with a Single Sacrificial Layer." *Micromachines* 11, no. 4 (2020): 349. <u>https://doi.org/10.3390/mi11040349</u>.
- Ganjalizadeh, V, GG Meena, MA Stott, H Schmidt, and AR Hawkins. "Single Particle Detection Enhancement with Wavelet-Based Signal Processing Technique." In *CLEO: Science and Innovations*, STu3H-4, 2019.
- Hamilton, Erik S, Vahid Ganjalizadeh, Joel G Wright, William G Pitt, Holger Schmidt, and Aaron R Hawkins.
 "3D Hydrodynamic Focusing in Microscale Channels Formed with Two Photoresist Layers." *Microfluidics and Nanofluidics* 23, no. 11 (2019): 1–8. <u>https://doi.org/10.1007/s10404-019-2293-z</u>.
- Black, Jennifer A, Vahid Ganjalizadeh, Joshua W Parks, and Holger Schmidt. "Multi-Channel Velocity Multiplexing of Single Virus Detection on an Optofluidic Chip." *Optics Letters* 43, no. 18 (2018): 4425–28. <u>https://doi.org/10.1364/ol.43.004425</u>.
- Stott, Matthew A, Vahid Ganjalizadeh, Gopikrishnan Meena, Johnny McMurray, Maclain Olsen, Marcos Orfila, Holger Schmidt, and Aaron R Hawkins. "Buried Rib SiO 2 Multimode Interference Waveguides for Optofluidic Multiplexing." *IEEE Photonics Technology Letters* 30, no. 16 (2018): 1487–90. <u>https://doi.org/10.1109/lpt.2018.2858258</u>.
- Stott, Matthew A, Vahid Ganjalizadeh, Maclain H Olsen, Marcos Orfila, Johnny McMurray, Holger Schmidt, and Aaron R Hawkins. "Optimized ARROW-Based MMI Waveguides for High Fidelity Excitation Patterns for Optofluidic Multiplexing." *IEEE Journal of Quantum Electronics* 54, no. 3 (2018): 1–7. <u>https://doi.org/10.1109/jqe.2018.2816120</u>.
- Ganjalizadeh, Vahid, Hadi Veladi, and Reza Yadipour. "A Novel Pressure Sensor Based on Optofluidic Micro-Ring Resonator." In 2014 International Conference on Optical MEMS and Nanophotonics, 133–34, 2014. <u>https://doi.org/10.1109/omn.2014.6924556</u>.
- Wall, Thomas, Johnny McMurray, Gopikrishnan Meena, Vahid Ganjalizadeh, Holger Schmidt, and Aaron R Hawkins. "Optofluidic Lab-on-a-Chip Fluorescence Sensor Using Integrated Buried ARROW (BARROW) Waveguides." *Micromachines* 8, no. 8 (2017): 252. <u>https://doi.org/10.3390/mi8080252</u>.

And some oral/poster presentations at international conferences.